INDIAN SCHOOL AL WADI AL KABIR					
Class: XI	Department: SCIENCE 2023-24 (PHYSICS)	Date: 20/01/2024			
Worksheet No:10	Topic: THERMAL PROPERTIES OF MATTER	Note: A4 FILE FORMAT			
NAME OF THE STUDENT-	CLASS & SECTION	ROLL NO.			
Multiple choice ques 1. The density of a su expansion of the sub (a) 10 ⁻⁴ °C ⁻¹ 2. A copper wire of le percentage change in	tions: Ibstance at 0°Cis 10 g/cc and at 100°C its density is 9.7 stance is (b) 10 ⁻² °C ⁻¹ (c) 10 ⁻³ °C ⁻¹ (d ength L increases in length by 0.3% on heating from 20° n area of a copper plate of dimensions 3L x 2L on heating	g/cc. The coefficient of linear d) 10 ⁻⁵ °C ⁻¹ °C to 40°C. Then ng from 20°C to			
(a) 0.15% 3. The ratio of densit (a) 1.003 4. pendulum clock sh (a) loses time (c) neither gain 5. Certain amount of amount of heat is giv = $400 \text{ J kg}^{-1} \text{ K}^{-1}$ and that (a) 4 °C 6. Specific heat of a s (a) low 7. Person weighing 60	(6) 0.3% (c) 0.4% (d) ies of iron at 10°C and 30°C is (α of iron = 10 x 10 ⁻⁶ °C ⁻¹) (6) 1.0003 (c) 1.006 (d) iows correct time at certain temperature. At a higher to (b) gains time ins nor loses time (d) firstly gains and then heat is given to 100g of copper to increase its tempera- ten to 50 g of water, then the rise in its temperature is at for water = 4200 J kg ⁻¹ K ⁻¹) (b) 5.25 °C (c) 8 °C (d) 10.5 °C ubstance at the melting point becomes (b) high (c) remains unchanged 0 kg takes in 2000 kcal diet in a day. If this energy was	d) 0.6% d) 1.0006 emperature the clock n loses ature by 21°C. If the same (specific heat capacity of coppe (d) infinite to be used in heating the perso			
without any losses, h (a) 30°C ANSWERS OF MCQs; CASE STUDY BAS 1. Bernoulli's theorer fluid (liquid or gas), the	is rise in temperature would be nearly (Given sp. heat (b) 40°C (c) 35°C (d) -1. (a),2. (d), 3. (d), 4. (a), 5. (a), 6. (d), 7. (b), ED QUESTIONS: - m, in fluid dynamics, relation among the pressure, veloc he compressibility and viscosity of which are negligible	of human body is 0.83 cal g ⁻¹ °C d) 45°C poity and elevation in a moving and the flow of which is steady			
or laminar. Bernoulli lined flow. It means t particles of the liquid Answer the followin (i) Bernoulli's principl (a) momentum (ii) Water is following (a) both pressure and (b) velocity is maximu	s principle is applicable on those non-viscous liquids w that a liquid in which its particles exert no force on eac l is same. g questions (any four) le is based on the conservation of (b) energy and momentum both (c) mass (c g through a horizontal pipe in a streamline flow, at the d velocity remain constant. um and pressure is minimum. Page 1 of 6	hich have laminar or stream h other i.e. the speed of all d) energy narrowest part of the pipe			

(c) both the pressure and velocity and(d) both the pressure and velocity and(iii) In houses for away from municipal(b) happens because	re maximum. re minimum. pal water tanks	often find it di	fficult to get water on the top floor. This			
(a) water wets the pipe.	(b) the pipes a	are not of unifo	orm diameter.			
(c) the viscosity of water is high.	(d) of loss of p	pressure during	the flow of water.			
(iv) In which of the following types of	of flows is the B	ernoulli's theo	rem strictly applicable			
(a) streamline and rotational	(b) turbulent	and rotational				
(c) turbulent and irrotational	(d) streamline	e and irrotation	al			
Viscocity of gasos	Or					
(a) decreases with increases in term	oraturo	(b) indopondo	ont of tomporature			
(a) decreases with increases in temperature		(d) may increa	ent of temperature			
(c) increases with increase in tempe	lature	(u) may merea	ase of decrease depend of flature of gas			
2. Surface tension is the tendency of	f fluid surfaces	to shrink into t	he minimum surface area possible.			
Intermolecular forces such as Van d	er Waals Force	draw the liquid	d particles together. The ratio of the			
surface force F to the length L along	which the force	e acts.				
T = F/L Where, F is the force per unit	t length					
L is the length in which force act,						
T is the surface tension of the liquid						
Answer the following questions (do	any four)					
(i) If T is the surface tension of the s	oap solution, th	ne amount of w	ork done in blowing a soap bubble from			
diameter D to a diameter 2D is						
(a) 2πD²T (b) 4πD²T	<mark>(c)</mark> 6πD²T	(d) πD²T				
(ii) If the surface a liquid is plane, th	en the angle of	contact of the	liquid with the walls of the container is			
(a) acute angle (b) obtuse and	gle (c) 90°	(d) 0°				
(iii) When a soap bubble is charged						
(a) it contracts		(b) it expands				
(c) it does not undergo any change in size (d) none of these						
(iv) If common salt is dissolved in water, then the surface tension of saltwater is						
(a) increased (b) decreased	(c) not	changed	(d) first increased then decrease			
A drop of oil is placed on the surface	Or of the water	Which of tho	following statements is correct?			
(a) it will remain on it as a sphere	e of the water.	which of the	Tonowing statements is correct?			
(b) it will spread as a thin layer						
(c) it will partly be as spherical drop	ets and nartly	as thin films				
(d) it will float at the distorted drop	on the water s	urface				
ASSERTION - REASON BASED QUES	ΓΙΟΝS					
Direction: - In the following question	ns, a statement	of assertion is	followed by a statement of reason. Mark			
the correct choice as:						
(a) If both assertion and reason are	true and reaso	n is the correct	explanation of assertion.			
(b) If both assertion and reason are true but reason is not correct explanation of assertion.						
(c) If assertion is true, but reason is false.						
(d) If both assertion and reason are	false.					
8. Assertion: The bridges declared u	nsafe after lon	g use.				
Reason: Elastic strength of bridges le	osses with time	2.				
(a)A (b) B	(c) C	(d)D				
2. Assertion: Stress is the internal force per unit area of a body.						
	Pa	ge 2 of 6				

(a)A	(b) B	(c) C	(d)D		
3. Assertion: A rigid	body can be el	astic.			
Reason: It torce is ap (ع)	plied on rigia ג א א א	body, it's dimer	nsion may change.		
(a)n	ט (ט)		(u)D		
5. Assertion: The sha Reason: The distance	ape and size of e between two (ה) א	rigid body rem	ain unaffected under the effect of external forces. ains constant in rigid body.		
6. Assertion: A lead	is more elastic	than rubber.			
Reason: If same load is very much less that	l is applied on t an that of rubb	the lead and ruler.	bber wire of same cross-sectional area, the strain of lead		
(a)A	(b) B	(c) C	(d)D		
Short answer type o	juestions-				
1. Can water be boil	1. Can water be boiled without heating?				
Ans: - Yes. At low pressure. Below the room temperature, when the pressure is made low, the water starts boiling without supplying any heat.					
 Why water is preferred to any other liquid in the hot water bottles? Ans: - Water is preferred to any other liquid in the hot water bottles because the specific heat of water is high. It does not cool fast. The ice at 0°C is converted into steam at 100°C. State the isothermal changes in the process. Ans: - Isothermal changes are (i) conversion of ice at 0°C into water at 0°C (ii) conversion of water at 100°C into steam at 100°C. 					
 4. What is relegation? Ans. It is a phenomenon of refreezing the water into ice (on the surface of ice formed due to increase in pressure) on removing the increased pressure. 5. What is sublimation? Ans. On heating a substance, the change from solid state to vapour state without passing through the liquid state is called sublimation. 6. What is specific heat of a gas in an isothermal process? Ans- Infinite, because ΔT = 0, c = Q/mΔT. 7. What is the basic condition for Newton's law of cooling to be obeyed? Ans. Newton's law of cooling will be obeyed if the temperature difference between body and surroundings is small, i.e., not more than 40°C. 					
		D	and 3 of 6		

NUMERICAL TYPE QUESTIONS: -

1. A brass disc has a hole of diameter 2.5 cm at 27°C. Find the change in the diameter of the hole of the disc when heated to 327° C. Given coefficient of linear expansion of brass is $1.9 \times 10^{-5} \circ C^{-1}$

Solution. Here, $D_{27} = 2.5 \text{ cm}$; $\Delta T = 327 - 27 = 300^{\circ}\text{C}$ $\alpha = 1.9 \times 10^{-5} \text{ °C}^{-1}$; $D_{327} - D_{27} = ?$ $D_{327} = D_{27} [1 + \alpha \Delta T] = D_{27} + D_{27} \alpha \Delta T$ Change in diameter $= D_{327} - D_{27} = D_{27} \alpha \Delta T$ $= 2.5 \times (1.9 \times 10^{-5}) \times 300$ = 0.014 cm.

2. How much should the temperature of a brass rod be increased so as to increase its length by 1%? Given α for brass is 0.00002 °C⁻¹

Solution. Here,
$$\Delta T = ?$$
; $\frac{\Delta L}{L} = \frac{1}{100}$
 $\alpha = 0.00002 \text{ °C}^{-1}$
As, $\Delta L = \alpha L \Delta T$
 $\therefore \Delta T = \frac{\Delta L}{L \alpha} = \frac{1}{100 \times 0.00002}$
 $= \frac{10^5}{2 \times 10^2} = 500^{\circ} \text{ C}$

3. Railway lines are laid with gaps to allow for expansion. If the gap between steel rails 60 m long be 3.60 cm at 10°C, then at what temperature will the lines just touch? Co-efficient of linear expansion of rail = $11 \times 10^{-6} \text{ °C}^{-1}$

Here,
$$l = 60 \text{ m}$$
; $\Delta l = 3.60 \text{ cm} = 3.6 \times 10^{-2} \text{ m}$;
 $\theta_1 = 10^{\circ}\text{C}, \ \theta_2 = ?$; $\alpha = 11 \times 10^{-6} \text{ }^{\circ}\text{C}^{-1}$
 $\alpha = \frac{\Delta l}{l(\theta_2 - \theta_1)} \text{ or } \theta_2 - \theta_1 = \frac{\Delta l}{l \alpha}$
or $\theta_2 = \theta_1 + \frac{\Delta l}{l \alpha} = 10 + \frac{3.60 \times 10^{-2}}{60 \times 11 \times 10^{-6}}$
 $= 10 + 54.54 = 64.54^{\circ}\text{C}$

4. A blacksmith fixes iron ring on the rim of the wooden wheel of a bullock cart. The diameter of the rim and the ring are 5.243 m and 5.231 m respectively at 27°C. To what temperature should the ring be heated so as to fit the rim of the wheel? Coefficient of linear expansion of iron is 1.20×10^{-5} K⁻¹.

Solution. Here,
$$L_{T_1} = 5.231 \text{ m}$$
;
 $L_{T_2} = 5.243 \text{ m}$; $T_1 = 27^{\circ}\text{C}$, $T_2 = ?$
As, $\alpha = \frac{L_{T_2} - L_{T_1}}{L_{T_1}(T_2 - T_1)} \therefore T_2 - T_1 = \frac{L_{T_2} - L_{T_1}}{L_{T_1} \times \alpha}$
or $T_2 = \frac{L_{T_2} - L_{T_1}}{L_{T_1} \times \alpha} + T_1$
 $= \frac{5.243 - 5.231}{5.231 \times 1.2 \times 10^{-5}} + 27$
 $= 191.1 + 27 = 218.1 \approx 218^{\circ}\text{C}$

5. The water of mass 75 g at 100°C is added to ice of mass 20g at-15°C. What is the resulting temperature. (Latent heat of ice = 80 cal/g and specific heat of ice = 0.5 cal $g^{-1} \circ C^{-1}$)

Solution. Let the resulting temperature be T_0 °C (iii) in raising the temperature of water formed Sp. heat of water, $s_1 = 1 \text{ cal/g/°C}$ from 0°C to T_0 °C. Heat lost by water = $m_1 s_1 \Delta T_1$ $= m_2 s_1 (T_0 - 0) = 20 \times 1 \times T_0 = 20 T_0$ cal $= 75 \times 1 \times (100 - T_0)$ cal. According to principle of calorimetry, Heat gained by ice heat lost = heat gained (*i*) from -15° C to 0° C $= m_2 s_2 \Delta T_2$ $75 (100 - T_0) = 150 + 1600 + 20 T_0$ or $7500 - 75 T_0 = 1750 + 20 T_0$ $= 20 \times 0.5 \times (0 + 15) = 150$ cal (*ii*) in converting into water at $0^{\circ}C = m_2 L$ or 95 $T_0 = 5750$ or $T_0 = \frac{5750}{95} = 60.5^{\circ} \text{C}$ $= 20 \times 80 = 1600$ cal

6. When 0.15 kg of ice at 0°C is mixed with 0.30 kg of water at 50°Cin a container, the resulting temperature is 6.7°C. Calculate the heat of fusion of ice. (water 4186 J kg^{-I} K⁻¹)

```
Solution. Heat lost by water
= m_w s_w (T_1 - T_2) = 0.30 \times 4186 \times (50 - 6.7)
                      = 54376.14 J
Heat taken by ice = m_i L + m_i s_w (T_2 - T_0)
    = 0.15 \times L + 0.15 \times 4186 \times (6.7 - 0)
    = 0.15 L + 4206.93 J
        Heat lost = heat gained
       54376 \cdot 14 = 0 \cdot 15 L + 4206 \cdot 93
...
                 L = 3.34 \times 10^5 \text{ J kg}^{-1}
or
```

7. How many grams of ice at -14°C are needed to cool 200 gram of water form 25°C to 10°C? Take specific heat of ice = 00.5 cal g^{-1} °C⁻¹ and Latent heat of ice = 80 cal g^{-1} .

> Heat gained by ice at - 14°C to change into water at 10°C is

Solution. Here, $m_{ice} = ? m_w = 200 \text{ g}$; $s_{\text{ice}} = 0.5 \text{ cal } \text{g}^{-1} \text{ }^{\circ}\text{C}^{-1}, L_{\text{ice}} = 80 \text{ cal } \text{g}^{-1}$ Heat lost by water in cooling from 25°C to 10°C $Q_1 = m_w \times s_w \times \Delta T_1 = 200 \times 1 \times (25 - 10)$

 $Q_2 = m_{\text{ice}} s_{\text{ice}} \Delta T_2 + m_{\text{ice}} L_{\text{ice}} + m_{\text{ice}} \times s_w \times \Delta T_3$ $= m \times 0.5 \times [0 - (-14)] + m \times 80$ $+ m \times 1 \times (10 - 0)$ = 97 m calAs heat lost = heat gained, so $Q_1 = Q_2$ 3000 = 97 m or $m = \frac{3000}{97} = 31 \text{ g}$ or

is

= 3000 cal.

8. How much meters can a 50 kg man climbs by using the energy from a slice of a bread which produces 420 kJ heat? Assuming that the human body efficiency working is 30%. Use $g = 10 \text{ m/s}^2$.

Sol: - Let h be the height climbed by man. Increase in PE of man = mgh = $50 \times 10 \times h J$ Heat produced; H = 420 kJ = 420 x 1000 J = 4.2×10^5 J

efficiency of man = 30%, So heat energy utilized = $\frac{30}{100}$ x 4.2 x 10⁵ = 12.6 x 10⁴ J

Now, increase in PE = heat energy utilized

 $50 \times 10 \times h = 12.6 \times 10^4$

 $h = \frac{126000}{50 \times 10} = 252m.$

PREPARED BY	CHECKED BY
Mr RANDHIR KUMAR GUPTA	HoD SCIENCE

Page 6 of 6